论文标题
用于机器学习应用程序的参数化模拟量子系统的表达和训练性
Expressibility and trainability of parameterized analog quantum systems for machine learning applications
论文作者
论文摘要
参数化的量子演化是近期量子设备的变分量子算法中的主要成分。在数字量子计算中,已经表明,随机参数化量子电路能够通过经典计算机表达复杂的分布,从而导致量子至上的演示。但是,它们混乱的性质使参数优化在各种方法中具有挑战性。最近,在使用驱动的多体系统的模拟量子计算中证明了类似的经典表达性的证据。对这种模拟系统的训练性的彻底研究尚未进行。在这项工作中,我们调查了系统中外部驾驶与混乱之间的相互作用如何决定相互作用量子系统的训练性和表现性。我们表明,如果系统热效,则训练以较大的表达性为代价,而当系统进入多体局部(MBL)阶段时,则相反的情况发生。从这个观察结果中,我们使用淬火的MBL动力学设计了一个协议,该协议允许准确的训练性,同时保持量子至上的整体动力学。我们的工作显示了量子多体物理学与其在机器学习中的应用之间的基本联系。我们通过示例应用程序在生成建模中结束了我们的工作,该应用程序采用了一个驱动的Ising自旋链的经过良好研究的模拟多体模型。我们的方法可以通过各种可用的量子平台来实现,包括冷离子,原子和超导电路
Parameterized quantum evolution is the main ingredient in variational quantum algorithms for near-term quantum devices. In digital quantum computing, it has been shown that random parameterized quantum circuits are able to express complex distributions intractable by a classical computer, leading to the demonstration of quantum supremacy. However, their chaotic nature makes parameter optimization challenging in variational approaches. Evidence of similar classically-intractable expressibility has been recently demonstrated in analog quantum computing with driven many-body systems. A thorough investigation of trainability of such analog systems is yet to be performed. In this work, we investigate how the interplay between external driving and disorder in the system dictates the trainability and expressibility of interacting quantum systems. We show that if the system thermalizes, the training fails at the expense of the a large expressibility, while the opposite happens when the system enters the many-body localized (MBL) phase. From this observation, we devise a protocol using quenched MBL dynamics which allows accurate trainability while keeping the overall dynamics in the quantum supremacy regime. Our work shows the fundamental connection between quantum many-body physics and its application in machine learning. We conclude our work with an example application in generative modeling employing a well studied analog many-body model of a driven Ising spin chain. Our approach can be implemented with a variety of available quantum platforms including cold ions, atoms and superconducting circuits