论文标题

PISCES-RF:液冷高功率稳态Helicon等离子体设备

PISCES-RF: a liquid-cooled high-power steady-state helicon plasma device

论文作者

Thakur, Saikat Chakraborty, Simmonds, Michael J., Caneses, Juan F., Chang, Fengjen, Doerner, Eric M. Hollmann Russell P., Goulding, Richard, Lumsdaine, Arnold, Rapp, Juergen, Tynan, George R.

论文摘要

射频频率(RF)驱动的Helicon等离子体源可以在氩气中相对中等的功率(<2 kW)产生相对较高的血浆(n> 10^19 m-3)。但是,为了产生相似的高密度等离子体,用于融合相关气体,例如氢,氘和氦气,需要更高的RF功率。对于非常高的RF功率,RF源设计中使用的RF透明电介质窗口的热问题,限制了等离子体操作时间标准。为了减轻这种约束,我们设计了,建造和测试了一种新型的液冷RF窗口,该窗口允许高功率(最高20 kW)的稳态操作。去离子(DI)水,在两个同心介电RF窗户之间流动,用作冷却剂。我们表明,完全方位角的DI水毯不会降低血浆的产生。我们使用氩气和氢获得了稳态的高密度等离子体(N> 10^19 m-3,T_E〜5 eV)。从DI水上的量热法,我们测量了在稳态条件下冷却剂去除的净热量。使用红外(IR)成像,我们计算恒定的等离子体热沉积并测量陶瓷层内表面上的最终稳态温度分布模式。我们发现热沉积模式遵循天线的螺旋形状。我们还显示了通过量热法测量的DI水吸收的热量与由于血浆加热和吸收的RF的综合作用而产生的总热量之间的一致性。这些结果用于回答200 kW RF设备(MPEX:材料等离子体暴露实验)的关键工程问题,该问题是在Oak Ridge国家实验室(ORNL)作为下一代血浆材料交互(PMI)设备设计的。

Radio-frequency (RF) driven helicon plasma sources can produce relatively high-density plasmas (n > 10^19 m-3) at relatively moderate powers (< 2 kW) in argon. However, to produce similar high-density plasmas for fusion relevant gases such as hydrogen, deuterium and helium, much higher RF powers are needed. For very high RF powers, thermal issues of the RF-transparent dielectric window, used in the RF source design, limit the plasma operation timescales. To mitigate this constraint, we have designed, built and tested a novel liquid-cooled RF window which allows steady state operations at high power (up to 20 kW). De-ionized (DI) water, flowing between two concentric dielectric RF windows, is used as the coolant. We show that a full azimuthal blanket of DI water does not degrade plasma production. We obtain steady-state, high-density plasmas (n > 10^19 m-3, T_e ~ 5 eV) using both argon and hydrogen. From calorimetry on the DI water, we measure the net heat that is being removed by the coolant at steady state conditions. Using infra-red (IR) imaging, we calculate the constant plasma heat deposition and measure the final steady state temperature distribution patterns on the inner surface of the ceramic layer. We find that the heat deposition pattern follows the helical shape of the antenna. We also show the consistency between the heat absorbed by the DI water, as measured by calorimetry, and the total heat due to the combined effect of the plasma heating and the absorbed RF. These results are being used to answer critical engineering questions for the 200 kW RF device (MPEX: Materials Plasma Exposure eXperiment) being designed at the Oak Ridge National Laboratory (ORNL) as a next generation plasma material interaction (PMI) device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源