论文标题
$ f \ wr s_n $的强Gelfand子组
Strong Gelfand subgroups of $F\wr S_n$
论文作者
论文摘要
研究了花圈产品的无多重亚组(强Gelfand子组)。提出了各种有用的减少论点。特别是,我们表明,对于每一个有限的$ f $,花圈产品$ f \ wrs_λ$,$s_λ$是年轻的子组,当且仅当$λ$是最多有两个部分的分区时,第二部分是0,1,或2。除了分类为2。除了分类。一路上,我们从某些特殊的高肠面向组的特殊亚组中得出各种分解公式。
The multiplicity-free subgroups (strong Gelfand subgroups) of wreath products are investigated. Various useful reduction arguments are presented. In particular, we show that for every finite group $F$, the wreath product $F\wr S_λ$, where $S_λ$ is a Young subgroup, is multiplicity-free if and only if $λ$ is a partition with at most two parts, the second part being 0,1, or 2. Furthermore, we classify all multiplicity-free subgroups of hyperoctahedral groups. Along the way, we derive various decomposition formulas for the induced representations from some special subgroups of hyperoctahedral groups.