论文标题

深协变量学习:优化从地形纹理中提取的信息,以进行地理建模应用

Deep covariate-learning: optimising information extraction from terrain texture for geostatistical modelling applications

论文作者

Kirkwood, Charlie

论文摘要

在可用数据的地方,在地统计建模中需要使用其他协变量,例如地形数据,以提高建模任务中的预测准确性。虽然海拔本身可能很重要,但可以通过过滤数字高程模型来提取诸如斜率角,曲率和粗糙度之类的高阶导数,以寻求任何给定问题的额外解释能力(但不一定会发现)。从本质上讲,从高程网格中提取尽可能多的任务信息将是有益的。但是,鉴于自然世界的复杂性,机会表明,使用“现成”过滤器的使用不太可能导致协变量为目前的目标变量提供强大的解释力,并且任何手动设计信息的协变量的尝试都可能是试验和驱动过程 - 不是最佳的。在本文中,我们以深度学习方法的形式提出了解决此问题的解决方案,以自动从标准的SRTM 900m Gridded数字高程模型(DEM)中自动得出最佳的特定任务地形纹理协变量。对于我们的目标变量,我们使用英国地质调查局的点采样的地球化学数据:钾,钙和砷在河流沉积物中的浓度。我们发现,我们的深度学习方法生成了对地统计建模的协变量,它们本身具有出人意料的强大解释能力,所有三个元素的R平方值约为0.6(在日志规模上具有砷)。这些结果是可以实现的,而没有为输入提供升级,北部或绝对升高的神经网络,并且纯粹反映了我们深神经网络从地形纹理中提取特定于任务信息的能力。我们希望这些结果将激发对地统计应用中深度学习能力的进一步调查。

Where data is available, it is desirable in geostatistical modelling to make use of additional covariates, for example terrain data, in order to improve prediction accuracy in the modelling task. While elevation itself may be important, additional explanatory power for any given problem can be sought (but not necessarily found) by filtering digital elevation models to extract higher-order derivatives such as slope angles, curvatures, and roughness. In essence, it would be beneficial to extract as much task-relevant information as possible from the elevation grid. However, given the complexities of the natural world, chance dictates that the use of 'off-the-shelf' filters is unlikely to derive covariates that provide strong explanatory power to the target variable at hand, and any attempt to manually design informative covariates is likely to be a trial-and-error process -- not optimal. In this paper we present a solution to this problem in the form of a deep learning approach to automatically deriving optimal task-specific terrain texture covariates from a standard SRTM 90m gridded digital elevation model (DEM). For our target variables we use point-sampled geochemical data from the British Geological Survey: concentrations of potassium, calcium and arsenic in stream sediments. We find that our deep learning approach produces covariates for geostatistical modelling that have surprisingly strong explanatory power on their own, with R-squared values around 0.6 for all three elements (with arsenic on the log scale). These results are achieved without the neural network being provided with easting, northing, or absolute elevation as inputs, and purely reflect the capacity of our deep neural network to extract task-specific information from terrain texture. We hope that these results will inspire further investigation into the capabilities of deep learning within geostatistical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源