论文标题
$ f(r,t)$重力中的红移漂移
Redshift Drift in $f(R,T)$ Gravity
论文作者
论文摘要
红移漂移是指宇宙对象的红移是时间的函数。红移漂移的测量在物理宇宙学中至关重要,可以用来区分不同的宇宙学模型。红移漂移可以用两种不同的方法表示。第一种方法与宇宙学有关,其中给红移漂移作为宇宙学参数的串联扩展,而第二种方法则作为哈勃参数的函数及其时间衍生物的函数,最终涉及所选重力理论的场方程。通过将两个系列的相应项等同起来,可以限制任何修改的重力理论的模型参数。本注的目的是限制$ f(r,t)$重力理论的模型参数$ζ$,其中$ f(r,t)= r +ζt$。通过将两个系列中的红移$ z $等同于$-0.51κ^{2} \ lyseSimζ\ lyseSim-0.47κ^{2} $,其中$κ^{2} = \ frac {8 prac {8πg} =
Redshift drift refers to the phenomena that redshift of cosmic objects is a function of time. Measurement of redshift drift is of fundamental importance in physical cosmology and can be utilized to distinguish different cosmological models. Redshift drift can be expressed in two distinct methods. The first method is related to cosmography, where the Redshift drift is given as a series expansion of cosmological parameters, while the second method is written as a function of Hubble parameter and its time derivatives which ultimately involve field equations of a chosen theory of gravity. By equating corresponding terms from both the series, the model parameter(s) of any modified theory of gravity can be constrained. The present note aims at constraining the model parameter $ζ$ of $f(R,T)$ gravity theory where $f(R,T)= R + ζT$. By equating linear terms in redshift $z$ from both the series, we constrain $ζ$ in the range $-0.51 κ^{2} \lesssim ζ\lesssim -0.47 κ^{2}$, where $κ^{2}=\frac{8 πG}{c^{4}}$.