论文标题
ESK理论的Chern-Simons扩展
Chern-Simons Extension of ESK Theory
论文作者
论文摘要
爱因斯坦引力理论的众所周知的Chern-simons扩展是根据添加到线性曲率希尔伯特·拉格朗日(Hilbert Lagrangian)中的正方形术语来写的。在最近的一篇论文中,我们根据它们是由添加到方形的钢丝式lagrangian中添加到的正方形术语或一个添加到线性透明的希尔伯特·拉格朗日(Hilbert Lagrangian)中的一个线性外表术语中的正方形术语或一个线性外表术语[Ref Ref。 4]。前者的扩展产生了可重标性重力的拓扑扩展,后者的延伸导致最小值重力的拓扑扩展。最后一个理论将在这里写成扭转。然后将解决宇宙学和粒子物理的后果。
The commonly-known Chern-Simons extension of Einstein gravitational theory is written in terms of a square-curvature term added to the linear-curvature Hilbert Lagrangian. In a recent paper, we constructed two Chern-Simons extensions according to whether they consisted of a square-curvature term added to the square-curvature Stelle Lagrangian or of one linear-curvature term added to the linear-curvature Hilbert Lagrangian [Ref. 4]. The former extension gives rise to the topological extension of the re-normalizable gravity, the latter extension gives rise to the topological extension of the least-order gravity. This last theory will be written here in its torsional completion. Then a consequence for cosmology and particle physics will be addressed.