论文标题
在没有规则变化的情况下,强更新定理和局部极限定理
Strong renewal theorem and local limit theorem in the absence of regular variation
论文作者
论文摘要
我们获得了一个强大的更新定理,无限平均值超出了规则变化,当基础分布属于几何部分吸引人的领域,具有(1/2,1] $的指数$α\ in(1/2,1] $)。在此过程中,我们获得了局部限制定理的局部限制定理,对于整个范围而言,这是$α\ n assemits $ nass $α\ n ass n as n as n ass n as n assempt in(0,2)。 $α\ in(0,1] $的续订功能。
We obtain a strong renewal theorem with infinite mean beyond regular variation, when the underlying distribution belongs to the domain of geometric partial attraction a semistable law with index $α\in (1/2,1]$. In the process we obtain local limit theorems for both finite and infinite mean, that is for the whole range $α\in (0,2)$. We also derive the asymptotics of the renewal function for $α\in (0,1]$.