论文标题
超级二进制黑洞的演变可以通过一个小的SKA PULSAR计时阵列追溯
Supermassive Binary Black Hole Evolution can be traced by a small SKA Pulsar Timing Array
论文作者
论文摘要
超级黑洞通常在星系中心发现,并随着宿主而发展。因此,预计超级二进制黑洞(SMBBH)将以近距离的银河系对存在,但是,没有一个明确检测到的。平方公里阵列(SKA)是一种多功能射电望远镜,收集区域接近100万平方米,具有巨大的检测纳米尔茨引力波(GWS)的潜力。在本文中,我们使用脉冲星时阵列(PTA)技术量化了SKA对现实的SMBBH种群的GW可检测性,并首次使用RedShift量化了其对揭示SMBBH进化的影响。只有$ \ sim20 $脉冲星,比以前的工作要小得多,SKA PTA有望在运行的大约5年内获得检测,并在大约10年后获得超过100 SMBBHS/年的检测率。尽管除了本文的范围之外,我们必须承认,持续的红噪声的存在将减少这里的预期检测数量。因此,必须了解和减轻PTA数据中的红噪声。鉴于每个系统的当前最著名的参数,将检测到一些来自一些著名SMBB候选者的GW签名,例如OJ 287、3C 66B,NGC 5548和ARK 120。在操作后30年内,预计有约60个单独的SMBBHS检测,$ z <0.05 $,超过$ 10^4 $,$ z <1 $。检测率急剧下降到$ z = 1 $。 SKA PTA通过红移的大量预期检测及其可辨别的演变将使SKA成为研究SMBBH的重要工具。
Supermassive black holes are commonly found in the center of galaxies and evolve with their hosts. The supermassive binary black holes (SMBBH) are thus expected to exist in close galaxy pairs, however, none has been unequivocally detected. The square kilometre array (SKA) is a multi-purpose radio telescope with a collecting area approaching 1 million square metres, with great potential for detecting nanohertz gravitational waves (GWs). In this paper, we quantify the GW detectability by SKA for a realistic SMBBH population using pulsar timing array (PTA) technique and quantify its impact on revealing SMBBH evolution with redshift for the first time. With only $\sim20$ pulsars, much smaller a requirement than in previous work, the SKA PTA is expected to obtain detection within about 5 years of operation and to achieve a detection rate of more than 100 SMBBHs/yr after about 10 years. Although beyond the scope of this paper, we must acknowledge that the presence of persistent red noise will reduce the number of expected detections here. It is thus imperative to understand and mitigate red noise in the PTA data. The GW signatures from a few well-known SMBBH candidates, such as OJ 287, 3C 66B, NGC 5548 and Ark 120, will be detected given the currently best-known parameters of each system. Within 30 years of operation, about 60 individual SMBBHs detection with $z<0.05$ and more than $10^4$ with $z<1$ are expected. The detection rate drops precipitately beyond $z=1$. The substantial number of expected detections and their discernible evolution with redshift by SKA PTA will make SKA a significant tool for studying SMBBHs.