论文标题
在符合性非球面上,脱节的汉密尔顿人的浮动理论
Floer theory of disjointly supported Hamiltonians on symplectically aspherical manifolds
论文作者
论文摘要
我们通过将这些汉密尔顿人的浮动理论不变性与它们的总和进行比较,研究了脱节支持的汉密尔顿人之间的浮动理论相互作用。这些不变的包括光谱不变,边界深度和Abbondolo-Haug-Schlenk的动作选择器。此外,我们的方法表明,在某些情况下,在符号歧管的开放子集中支持的哈密顿量的光谱不变性独立于环境歧管。
We study the Floer-theoretic interaction between disjointly supported Hamiltonians by comparing Floer-theoretic invariants of these Hamiltonians with the ones of their sum. These invariants include spectral invariants, boundary depth and Abbondandolo-Haug-Schlenk's action selector. Additionally, our method shows that in certain situations the spectral invariants of a Hamiltonian supported in an open subset of a symplectic manifold are independent of the ambient manifold.