论文标题
VDO-SLAM:视觉动态的对象感知大满贯系统
VDO-SLAM: A Visual Dynamic Object-aware SLAM System
论文作者
论文摘要
将同时定位和映射(SLAM)估计和动态场景建模相结合可以使机器人自主权在动态环境中受益。机器人路径计划和避免障碍物的任务取决于对场景中动态对象运动运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态动态吸引的SLAM系统,该系统利用语义信息,以实现场景中动态刚性对象的准确运动估算和跟踪,而无需任何先前了解对象的形状或几何模型。所提出的方法识别并跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致了对机器人轨迹和物体的完整SE(3)运动以及环境时空图的高度准确估计。该系统能够从对象的SE(3)运动中提取线性速度估算,从而为复杂的动态环境提供了重要功能。我们证明了拟议系统在许多实际室内和室外数据集上的性能,结果对最新算法显示出一致且实质性的改进。可以使用源代码的开源版本。
Combining Simultaneous Localisation and Mapping (SLAM) estimation and dynamic scene modelling can highly benefit robot autonomy in dynamic environments. Robot path planning and obstacle avoidance tasks rely on accurate estimations of the motion of dynamic objects in the scene. This paper presents VDO-SLAM, a robust visual dynamic object-aware SLAM system that exploits semantic information to enable accurate motion estimation and tracking of dynamic rigid objects in the scene without any prior knowledge of the objects' shape or geometric models. The proposed approach identifies and tracks the dynamic objects and the static structure in the environment and integrates this information into a unified SLAM framework. This results in highly accurate estimates of the robot's trajectory and the full SE(3) motion of the objects as well as a spatiotemporal map of the environment. The system is able to extract linear velocity estimates from objects' SE(3) motion providing an important functionality for navigation in complex dynamic environments. We demonstrate the performance of the proposed system on a number of real indoor and outdoor datasets and the results show consistent and substantial improvements over the state-of-the-art algorithms. An open-source version of the source code is available.