论文标题
通过半监督对抗训练进行欺骗
Spoof Face Detection Via Semi-Supervised Adversarial Training
论文作者
论文摘要
面部欺骗会在面部识别系统中引起严重的安全威胁。以前的反企业作品集中在监督技术上,通常是二进制或辅助监督。他们中的大多数人遭受有限的鲁棒性和概括性,尤其是在跨数据库环境中。在本文中,我们提出了一个半监督的对抗性学习框架,用于欺骗面部检测,这在很大程度上放松了监督状况。为了捕获潜在表示空间中的实时面孔数据的基本结构,我们建议仅通过卷积编码器 - 码头网络充当发电机来训练实时面部数据。同时,我们添加了一个用作歧视者的第二个卷积网络。生成器和歧视者通过相互竞争来培训,同时合作了解正常班级(现场面孔)中的基本概念。由于欺骗面部检测是基于视频的(即时间信息),因此我们直观地将转换为连续视频帧转换的光流图作为输入。我们的方法不含欺骗的面孔,因此对于不同类型的欺骗,甚至未知的欺骗都具有稳健性和一般性。关于内部和跨数据库测试的广泛实验表明,我们的半监督方法与最先进的监督技术取得更好或可比的结果。
Face spoofing causes severe security threats in face recognition systems. Previous anti-spoofing works focused on supervised techniques, typically with either binary or auxiliary supervision. Most of them suffer from limited robustness and generalization, especially in the cross-dataset setting. In this paper, we propose a semi-supervised adversarial learning framework for spoof face detection, which largely relaxes the supervision condition. To capture the underlying structure of live faces data in latent representation space, we propose to train the live face data only, with a convolutional Encoder-Decoder network acting as a Generator. Meanwhile, we add a second convolutional network serving as a Discriminator. The generator and discriminator are trained by competing with each other while collaborating to understand the underlying concept in the normal class(live faces). Since the spoof face detection is video based (i.e., temporal information), we intuitively take the optical flow maps converted from consecutive video frames as input. Our approach is free of the spoof faces, thus being robust and general to different types of spoof, even unknown spoof. Extensive experiments on intra- and cross-dataset tests show that our semi-supervised method achieves better or comparable results to state-of-the-art supervised techniques.