论文标题

缩小网络动力学尺寸的三倍:同步应用程序

Threefold way to the dimension reduction of dynamics on networks: an application to synchronization

论文作者

Thibeault, Vincent, St-Onge, Guillaume, Dubé, Louis J., Desrosiers, Patrick

论文摘要

可以将几个复杂的系统建模为大型网络,其中节点的状态通过相邻节点之间的相互作用不断发展,从而形成高维的非线性动力学系统。网络科学的主要挑战之一是预测网络拓扑和动态对国家进化的影响,尤其是对集体现象的出现,例如同步。我们通过提出动态近似减少技术(DART)来解决这个问题,该技术将高维(完整)动力学映射到低维(减少)动力学,同时保留原始系统的最显着特征,无论是拓扑和动力学。 DART通过允许处理复杂值的动力学变量,节点的固有特性以及具有强烈相互作用群落的模块化网络来概括缩小尺寸的方法。最重要的是,我们确定了三个主要的还原程序,它们的相对准确性取决于状态的演变是主要取决于固有动力学,度序列还是邻接矩阵。我们使用振荡器网络的相同步作为三倍方法的基准。我们成功预测了随机块模型上三个相动态(Winfree,Kuramoto,Theta)的同步曲线。此外,我们在具有不对称块的平均随机块模型上获得了Kuramoto-Sakaguchi模型的分叉,并在数值上显示了两星级图上的外围嵌合体状态的存在。这使我们能够强调社区规模的不对称性在嵌合体状态的存在中所扮演的关键作用。最后,我们通过使用DART在Star Graph上使用DART为Kuramoto-Sakaguchi模型来系统地恢复爆炸性同步的众所周知的分析结果。

Several complex systems can be modeled as large networks in which the state of the nodes continuously evolves through interactions among neighboring nodes, forming a high-dimensional nonlinear dynamical system. One of the main challenges of Network Science consists in predicting the impact of network topology and dynamics on the evolution of the states and, especially, on the emergence of collective phenomena, such as synchronization. We address this problem by proposing a Dynamics Approximate Reduction Technique (DART) that maps high-dimensional (complete) dynamics unto low-dimensional (reduced) dynamics while preserving the most salient features, both topological and dynamical, of the original system. DART generalizes recent approaches for dimension reduction by allowing the treatment of complex-valued dynamical variables, heterogeneities in the intrinsic properties of the nodes as well as modular networks with strongly interacting communities. Most importantly, we identify three major reduction procedures whose relative accuracy depends on whether the evolution of the states is mainly determined by the intrinsic dynamics, the degree sequence, or the adjacency matrix. We use phase synchronization of oscillator networks as a benchmark for our threefold method. We successfully predict the synchronization curves for three phase dynamics (Winfree, Kuramoto, theta) on the stochastic block model. Moreover, we obtain the bifurcations of the Kuramoto-Sakaguchi model on the mean stochastic block model with asymmetric blocks and we show numerically the existence of periphery chimera state on the two-star graph. This allows us to highlight the critical role played by the asymmetry of community sizes on the existence of chimera states. Finally, we systematically recover well-known analytical results on explosive synchronization by using DART for the Kuramoto-Sakaguchi model on the star graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源