论文标题

关于Besove方程的薄弱解决方案的规律性

On the regularity of weak solutions of the Boussinesq equations in Besov spaces Dedicated to Enrique Zuazua on the occasion of his sixtieth birthday

论文作者

Barbagallo, A., Gala, S., Ragusa, M. A., Thera, M.

论文摘要

本文解决的主要问题涉及Z. Zhang对结果的扩展,他在同质的BESOV空间$ \ dot {b} _ {\ infty,\ infty} ^{ - 1}( - 1}(\ Mathbb {r}% ^{3})的情况{eq1.1})以下(从$ h^{2} $中的初始数据开始,以至于$%(\ nabla u,\ nabla u,\nablaθ)\ in l^{2} \ left(0,t; \ dot; \ dot; \ dot {b} _ {b} _ { \ Mathbb {r}^{3})\ right)$,那么解决方案在$ t $之后永远保持平稳。在此贡献中,我们仅通过假设速度$ u $而不是温度$θ$的条件来证明弱解决方案的结果相同。

The main issue addressed in this paper concerns an extension of a result by Z. Zhang who proved, in the context of the homogeneous Besov space $\dot{B}_{\infty ,\infty }^{-1}(\mathbb{R}% ^{3})$, that, if the solution of the Boussinesq equation (\ref% {eq1.1}) below (starting with an initial data in $H^{2}$) is such that $% (\nabla u,\nabla θ)\in L^{2}\left( 0,T;\dot{B}_{\infty ,\infty }^{-1}(% \mathbb{R}^{3})\right)$, then the solution remains smooth forever after $T$. In this contribution, we prove the same result for weak solutions just by assuming the condition on the velocity $u$ and not on the temperature $θ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源