论文标题
在连续的时间限制中,强耦合晶格QCD
Strong Coupling Lattice QCD in the Continuous Time Limit
论文作者
论文摘要
我们介绍了晶格QCD的结果,并在无限规耦合的极限的交错费用上介绍了从离散的空间晶格中从蠕虫型蒙特卡洛算法获得的结果,但具有连续的欧几里得时间。这是通过将各向异性参数$ξ=a_σ/a_τ$和时间键$n_τ$的数量发送给无穷大的,将比率$保持在=ξ/nτ$固定的情况下而获得。显而易见的收益是,必须执行无连续的外推$n_τ\ rightarrow \ infty $。此外,该算法更快,标志问题消失了。我们得出连续的时间分配函数和相应的哈密顿公式。我们将我们的计算与离散晶格的计算进行比较,并研究该制度中晶格QCD的零和有限温度性能。
We present results for lattice QCD with staggered fermions in the limit of infinite gauge coupling, obtained from a worm-type Monte Carlo algorithm on a discrete spatial lattice but with continuous Euclidean time. This is obtained by sending both the anisotropy parameter $ξ=a_σ/a_τ$ and the number of time-slices $N_τ$ to infinity, keeping the ratio $aT=ξ/Nτ$ fixed. The obvious gain is that no continuum extrapolation $N_τ\rightarrow \infty$ has to be carried out. Moreover, the algorithm is faster and the sign problem disappears. We derive the continuous time partition function and the corresponding Hamiltonian formulation. We compare our computations with those on discrete lattices and study both zero and finite temperature properties of lattice QCD in this regime.