论文标题
梯度流线和Morse同源性的模量空间
The moduli space of gradient flow lines and Morse homology
论文作者
论文摘要
我们提供了一系列关于Morse同源性的注释,这些注释是由第一个名称Autor在慕尼黑的Ludwig-Maximilian University,首尔国立大学和Augsburg大学的演讲中生长的。尽管我们没有在这些笔记中讨论浮动同源性,但它们的书面形式考虑了浮动的同源性。因此,我们使用的概念可以推广到半无限尺寸的情况下。在有限维度的情况下,它们可能并不总是最有效的,但另一方面,有限的维情况的优势是,这些概念可以比半限制尺寸的概念更容易地可视化,从而使读者为读者提供了正确的直觉,使浮动的同源性如何工作。
We present a set of notes on Morse Homology, which grew out of lectures the first named autor gave at Ludwig-Maximilian University in Munich, Seoul National University, and the University of Augsburg. Although we do not discuss Floer homology in these notes, they are written having Floer homology in mind. Therefore, we use concepts which can be generalized to the semi-infinite dimensional case. In the finite dimensional case, they might not always be the most efficient ones but on the other hand, the finite dimensional case has the advantage that these concepts can be visualized much more easily than in the semi-infinite dimensional one, giving the reader the right intuition how Floer homology works.