论文标题

正规化出生的人分子动力学

Regularized Born-Oppenheimer molecular dynamics

论文作者

Rawlinson, Jonathan I., Tronci, Cesare

论文摘要

虽然分子动力学中圆锥形交集的处理通常需要非绝热的方法,但在某些情况下,出生的烟熏剂绝热近似仍被用作有效的替代方案。在Mead-truhlar最小耦合的背景下,本文提出了核Born-Oppenheimer方程的新封闭,从而导致了分子动力学方案捕获几何相效应。具体而言,核Ehrenfest动力学的半经典闭合是通过方便的核Bohmian轨迹处方获得的。圆锥形的交叉口适当地定于产生的核颗粒运动中,相关的洛伦兹力涉及平滑的浆果曲率,以识别依赖环的几何相。反过来,随着循环从原始奇异性扩展,该几何阶段迅速达到了通常的拓扑指数。此特征再现了最近确切的非绝热研究中出现的现象学,如线性振动耦合的Jahn-Teller问题中明确显示。同样,对角校正项的新提出的正则化也被证明可以非常忠实地繁殖最近的非绝热研究中提出的能量表面。

While the treatment of conical intersections in molecular dynamics generally requires nonadiabatic approaches, the Born-Oppenheimer adiabatic approximation is still adopted as a valid alternative in certain circumstances. In the context of Mead-Truhlar minimal coupling, this paper presents a new closure of the nuclear Born-Oppenheimer equation, thereby leading to a molecular dynamics scheme capturing geometric phase effects. Specifically, a semiclassical closure of the nuclear Ehrenfest dynamics is obtained through a convenient prescription for the nuclear Bohmian trajectories. The conical intersections are suitably regularized in the resulting nuclear particle motion and the associated Lorentz force involves a smoothened Berry curvature identifying a loop-dependent geometric phase. In turn, this geometric phase rapidly reaches the usual topological index as the loop expands away from the original singularity. This feature reproduces the phenomenology appearing in recent exact nonadiabatic studies, as shown explicitly in the Jahn-Teller problem for linear vibronic coupling. Likewise, a newly proposed regularization of the diagonal correction term is also shown to reproduce quite faithfully the energy surface presented in recent nonadiabatic studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源