论文标题

sindy-bvp:边界价值问题的非线性动力学的稀疏识别

SINDy-BVP: Sparse Identification of Nonlinear Dynamics for Boundary Value Problems

论文作者

Shea, Daniel E., Brunton, Steven L., Kutz, J. Nathan

论文摘要

我们为空间依赖的边界价值问题(BVP)开发了数据驱动的模型发现和系统识别技术。具体而言,我们利用非线性动力学(SINDY)算法和组稀疏回归技术的稀疏识别,并具有一组强迫函数和相应的状态可变测量值,以产生系统的分离模型。方法模型强制由$ l [u(x)] = f(x)$的线性或非线性操作员控制的系统强制模型在[a,b] $中的规定域$ x \上。我们在一系列示例系统中演示了该方法,包括Sturm-Liouville操作员,梁理论(弹性)和一类非线性BVP。生成的数据驱动模型用于推断运算符和/或空间依赖的参数,这些参数描述了系统的异质,物理量。我们的Sindy-BVP框架将实现广泛的系统的表征,例如,发现具有异质性变异性的各向异性材料。

We develop a data-driven model discovery and system identification technique for spatially-dependent boundary value problems (BVPs). Specifically, we leverage the sparse identification of nonlinear dynamics (SINDy) algorithm and group sparse regression techniques with a set of forcing functions and corresponding state variable measurements to yield a parsimonious model of the system. The approach models forced systems governed by linear or nonlinear operators of the form $L[u(x)] = f(x)$ on a prescribed domain $x \in [a, b]$. We demonstrate the approach on a range of example systems, including Sturm-Liouville operators, beam theory (elasticity), and a class of nonlinear BVPs. The generated data-driven model is used to infer both the operator and/or spatially-dependent parameters that describe the heterogenous, physical quantities of the system. Our SINDy-BVP framework will enables the characterization of a broad range of systems, including for instance, the discovery of anisotropic materials with heterogeneous variability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源