论文标题
在空间共线限制的四体问题上
On the spatial collinear restricted four-body problem with non-spherical primaries
论文作者
论文摘要
在目前的工作中,已经在存在点的存在,线性稳定性,第三个粒子旋转的运动区域和融合盆地域的运动区域中进行了系统研究,该运动区域与库的盆地结构范围与库的空间构造相关的四体性问题的空间构型与非球形初学者(即,原始人)或普罗兰特(Primaries sp)opmeraties iss iss iss iss iss of princerate sprite iss issectial。图表点的位置的参数演变是原始人的填充性和延展性参数的函数以及在线性意义上的稳定性的函数。此外,数值调查表明,轴上两个轴上的唯一库点是线性稳定的,可用于多种结合的填充性参数和质量参数,而非线性库库点是线性不稳定的,因此在非线性意义上也是不稳定的,对于质量参数的质量参数和含量参数的值也是不稳定的。此外,还描述了可能的运动区域,其中无穷小的质量是雅各布常数的函数。此外,通过使用Newton-Raphson(NR)迭代方案的多元版本来说明与库点相关的融合(BOC)盆地(BOC)。
In the present work a systematic study has been presented in the context of the existence of libration points, their linear stability, the regions of motion where the third particle can orbit and the domain of basins of convergence linked to libration points in the spatial configuration of the collinear restricted four-body problem with non-spherical primaries (i.e., the primaries are oblate or prolate spheroid). The parametric evolution of the positions of the libration points as function of the oblateness and prolateness parameters of the primaries and the stability of these points in linear sense are illustrated numerically. Moreover, the numerical investigation shows that the only libration points which lie on either of the axes are linearly stable for several combinations of the oblateness parameter and mass parameter whereas the non-collinear libration points are found linearly unstable, consequently unstable in nonlinear sense also, for studied value of mass parameter and oblateness parameter. Moreover, the regions of possible motion are also depicted, where the infinitesimal mass is free to orbit, as function of Jacobian constant. In addition, the basins of convergence (BoC) linked to the libration points are illustrated by using the multivariate version of the Newton-Raphson (NR) iterative scheme.