论文标题
使用特征根的延续的时间延迟系统快速生成稳定图表
Fast generation of stability charts for time-delay systems using continuation of characteristic roots
论文作者
论文摘要
许多动态过程涉及时间延迟,因此它们的动态由延迟微分方程(DDE)控制。研究动态系统的稳定性至关重要,但是分析时间延迟系统的稳定性是具有挑战性的,因为DDES是无限的。我们提出了一种新的方法,以使用特征根(CCR)的延续来快速生成DDE的稳定性图表。在我们的CCR方法中,DDE的特征方程式的根写为感兴趣参数的隐式函数,并且持续方程以普通微分方程(ODE)的形式得出。然后使用数值延续来确定参数空间中所有点的特征根。然后可以轻松确定原始DDE的稳定性。提出的方法的一个关键优势是解决了线性独立的ODES系统,而不是在域中每个网格点解决大型特征值问题的典型策略。因此,CCR方法大大减少了确定DDE稳定性所需的计算工作。正如我们在几个示例中证明的那样,CCR方法生成了高度准确的稳定性图,并且比Galerkin近似方法快10倍。
Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose a new approach to quickly generate stability charts for DDEs using continuation of characteristic roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written as implicit functions of the parameters of interest, and the continuation equations are derived in the form of ordinary differential equations (ODEs). Numerical continuation is then employed to determine the characteristic roots at all points in a parametric space; the stability of the original DDE can then be easily determined. A key advantage of the proposed method is that a system of linearly independent ODEs is solved rather than the typical strategy of solving a large eigenvalue problem at each grid point in the domain. Thus, the CCR method significantly reduces the computational effort required to determine the stability of DDEs. As we demonstrate with several examples, the CCR method generates highly accurate stability charts, and does so up to 10 times faster than the Galerkin approximation method.