论文标题

与自我牵键多交流网络的顺序建议

Sequential Recommendation with Self-Attentive Multi-Adversarial Network

论文作者

Ren, Ruiyang, Liu, Zhaoyang, Li, Yaliang, Zhao, Wayne Xin, Wang, Hui, Ding, Bolin, Wen, Ji-Rong

论文摘要

最近,深度学习在顺序推荐的任务中取得了重大进展。现有的神经顺序推荐人通常采用一种具有最大似然估计(MLE)训练的生成方式。当涉及上下文信息(称为因素)时,很难分析每个因素何时以及如何影响最终建议性能。为此,我们采用新的观点,并介绍对抗性学习以进行顺序推荐。在本文中,我们提出了一个多因素生成对抗网络(MFGAN),以明确对上下文信息对顺序建议的影响进行建模。具体而言,我们提出的MFGAN有两种模块:基于变压器的发电机以用户行为序列为输入,以推荐可能的下一个项目,以及从不同因素的角度来评估生成的子序列的多个特定因素的歧视器。要学习参数,我们采用了经典的策略梯度方法,并利用歧视者的奖励信号来指导生成器的学习。我们的框架可以灵活地包含多种因素信息,并且能够追踪每个因素如何对随着时间的推移建议决策的贡献。在三个现实世界数据集上进行的广泛实验证明了我们所提出的模型优于最先进方法,就有效性和解释性而言。

Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源