论文标题

MBA-Raingan:多支分支注意力生成的对抗网络,用于从单个图像中降雨的混合

MBA-RainGAN: Multi-branch Attention Generative Adversarial Network for Mixture of Rain Removal from Single Images

论文作者

Shen, Yiyang, Feng, Yidan, Deng, Sen, Liang, Dong, Qin, Jing, Xie, Haoran, Wei, Mingqiang

论文摘要

当在大雨的日子通过玻璃捕获图像时,雨会严重阻碍场景对象的可见性。我们观察到三个有趣的现象,即1)雨是雨滴,雨条和雨雾的混合物; 2)摄像机的深度决定了物体可见性的程度,在附近和遥远的物体被视觉上被雨条和雨水遮挡。 3)玻璃上的雨滴随机影响整个图像空间的对象可见性。我们首次考虑,物体的整体可见性取决于雨(MOR)的混合物。但是,现有的解决方案和已建立的数据集缺乏对MOR的全面考虑。在这项工作中,我们首先制定了一种新的降雨成像模型。到那时,我们通过考虑雨滴(名为RainCityScapes ++)来丰富流行的RainCityScapes。此外,我们提出了一个多分支注意力产生的对抗网络(称为MBA-Raingan),以完全删除MOR。该实验显示了我们的方法对雨cityscapes ++的最新方法的明显视觉和数值改进。代码和数据集将可用。

Rain severely hampers the visibility of scene objects when images are captured through glass in heavily rainy days. We observe three intriguing phenomenons that, 1) rain is a mixture of raindrops, rain streaks and rainy haze; 2) the depth from the camera determines the degrees of object visibility, where objects nearby and faraway are visually blocked by rain streaks and rainy haze, respectively; and 3) raindrops on the glass randomly affect the object visibility of the whole image space. We for the first time consider that, the overall visibility of objects is determined by the mixture of rain (MOR). However, existing solutions and established datasets lack full consideration of the MOR. In this work, we first formulate a new rain imaging model; by then, we enrich the popular RainCityscapes by considering raindrops, named RainCityscapes++. Furthermore, we propose a multi-branch attention generative adversarial network (termed an MBA-RainGAN) to fully remove the MOR. The experiment shows clear visual and numerical improvements of our approach over the state-of-the-arts on RainCityscapes++. The code and dataset will be available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源