论文标题
气球,凸起和颈部:临界点附近弹性系统中纵相分离的精确解决方案
Ballooning, bulging and necking: an exact solution for longitudinal phase separation in elastic systems near a critical point
论文作者
论文摘要
弹性系统中纵相分离的突出例子包括弹性颈部,圆柱派对气球中凸起的繁殖以及凝胶纤维的串珠受到表面张力。在这里,我们证明,如果将这种系统的参数调节在临界点附近(这两个阶段消失的差异),那么所有系统的行为是通过在外部领域中熟悉的简单通用弹性能量的最小化来给出的。我们通过分析能量最小化,这不仅可以产生众所周知的界面Tanh溶液,还产生了有限和无限长度系统中稳定且不稳定的解决方案的完整集合,从而揭示了弹性系统的完整形状演化和滞后。相应地,我们还发现了延迟发作的分析结果,关键性的变化以及对系统长度减少的不稳定性的最终抑制,这表明我们的简单近临界理论捕捉了远距离关键系统的许多复杂性和编排。最后,我们找到了上面给出的相位分离的三个突出示例的关键点,并演示了每个系统如何遵循通用解决方案集。
Prominent examples of longitudinal phase separation in elastic systems include elastic necking, the propagation of a bulge in a cylindrical party balloon and the beading of a gel fiber subject to surface tension. Here we demonstrate that, if the parameters of such a system are tuned near a critical point (where the difference between the two phases vanishes) then the behaviour of all systems is given by the minimization of a simple and universal elastic energy familiar from Ginzburg-Landau theory in an external field. We minimize this energy analytically, which yields not only the well known interfacial tanh solution, but also the complete set of stable and unstable solutions in both finite and infinite length systems, unveiling the elastic system's full shape evolution and hysteresis. Correspondingly, we also find analytic results for the the delay of onset, changes in criticality and ultimate suppression of instability with diminishing system length, demonstrating that our simple near-critical theory captures much of the complexity and choreography of far-from-critical systems. Finally, we find critical points for the three prominent examples of phase separation given above, and demonstrate how each system then follows the universal set of solutions.