论文标题

纳米机电系统的量子旋转栅门制度

Quantum turnstile regime of nanoelectromechanical systems

论文作者

Dragomir, R., Moldoveanu, V., Stanciu, S., Tanatar, B.

论文摘要

在广义主方程的框架中,分析了旋转门操作对纳米机电系统(NEMS)中电流诱导的颤音动力学的影响。在我们的模拟中,每个旋转周期循环允许在偏置的介观子系统上泵送多达两个相互作用的电子,该系统静电耦合到纳米架的振动模式。时间依赖的平均颤音数对旋转门驱动非常敏感,沿充电/放电序列迅速增加/减小。纳米装饰物所经历的一系列加热和冷却周期是由于特定的颤音辅助顺序隧道过程沿旋转栅极时期。在每个充电/放电周期结束时,纳米索子通过与电子配置$ν$相关的vibron饰面状态$s_ν$的线性组合描述。如果旋转门操作导致完成电子耗竭,则纳米装饰剂返回其平衡位置,即其位移消失。事实证明,在NEMS上施加的合适偏见会导致旋转周期结束时缓慢而完全冷却。我们的计算表明,量子旋转栅栏制度切换具有不同电子职业数量的vibron划分的子空间之间的NEM的动力学。我们预测,电子 - 荧光龙相互作用的旋转门控制会引起输入和输出瞬态电流的可测量变化。

The effects of a turnstile operation on the current-induced vibron dynamics in nanoelectromechanical systems (NEMS) are analyzed in the framework of the generalized master equation. In our simulations each turnstile cycle allows the pumping of up to two interacting electrons across a biased mesoscopic subsystem which is electrostatically coupled to the vibrational mode of a nanoresonator. The time-dependent mean vibron number is very sensitive to the turnstile driving, rapidly increasing/decreasing along the charging/discharging sequences. This sequence of heating and cooling cycles experienced by the nanoresonator is due to specific vibron-assisted sequential tunneling processes along a turnstile period. At the end of each charging/discharging cycle the nanoresonator is described by a linear combination of vibron-dressed states $s_ν$ associated to an electronic configuration $ν$. If the turnstile operation leads to complete electronic depletion the nanoresonator returns to its equilibrium position, i.e.\,its displacement vanishes. It turns out that a suitable bias applied on the NEMS leads to a slow but complete cooling at the end of the turnstile cycle. Our calculations show that the quantum turnstile regime switches the dynamics of the NEMS between vibron-dressed subspaces with different electronic occupation numbers. We predict that the turnstile control of the electron-vibron interaction induces measurable changes on the input and output transient currents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源