论文标题

全息偏度半学中的相变

Phase transitions in a holographic multi-Weyl semimetal

论文作者

Juričić, Vladimir, Landea, Ignacio Salazar, Soto-Garrido, Rodrigo

论文摘要

物质的拓扑阶段最近在社区中引起了人们的关注,以处理用于强烈相互作用的冷凝物质系统的全息方法。特别是,最近制定了动量空间中浆果曲率的单极 - 抗抗抗凝结液缺陷在晶格上以晶格为特征的无间隙Weyl和多翼半法的全息模型。在本文中,以寻找拓扑全息相的努力,我们表明,多翼半法的全息模型具有相当丰富的相位景观。特别是,它包括一个新型阶段,我们将其列为$ xy $ nematic,在强耦合方面稳定,因为我们通过自由能和准正常模式分析明确显示。此外,我们通过异常运输系数提供了表征。我们希望我们的发现将激发未来的作品,以探讨拓扑阶段的全息知识。

Topological phases of matter have recently attracted a rather notable attention in the community dealing with the holographic methods applied to strongly interacting condensed matter systems. In particular, holographic models for gapless Weyl and multi-Weyl semimetals, characterized on a lattice by the monopole-antimonopole defects of the Berry curvature in momentum space, were recently formulated. In this paper, motivated by the quest for finding topological holographic phases, we show that holographic model for multi-Weyl semimetals features a rather rich landscape of phases. In particular, it includes a novel phase which we dub $xy$ nematic, stable at strong coupling, as we explicitly show by the free energy and the quasi-normal mode analyses. Furthermore, we provide its characterization through the anomalous transport coefficients. We hope that our findings will motivate future works exploring the holographic realizations of the topological phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源