论文标题

平均而言,Steiner 3居中

On the average Steiner 3-eccentricity of trees

论文作者

Li, Xingfu, Yu, Guihai, Klavžar, Sandi

论文摘要

steiner $ k $ centricity a Graph $ g $的顶点$ V $是所有$ k $ -subsets $ v(g)$的最大steiner距离,其中包含$ v $。在本文中,Steiner $ 3 $ centricity在树上进行了研究。施用了施泰纳$ 3 $ centricity的树木的某些一般特性。给出了不增加平均施泰纳$ 3 $ centricity的树转换。随着其应用,平均施泰纳(Steiner)的几个下限和上限得出了$ 3 $的树木。

The Steiner $k$-eccentricity of a vertex $v$ of a graph $G$ is the maximum Steiner distance over all $k$-subsets of $V(G)$ which contain $v$. In this paper Steiner $3$-eccentricity is studied on trees. Some general properties of the Steiner $3$-eccentricity of trees are given. A tree transformation which does not increase the average Steiner $3$-eccentricity is given. As its application, several lower and upper bounds for the average Steiner $3$-eccentricity of trees are derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源