论文标题
紧凑型空间中的Schwinger效应:实时计算
Schwinger effect in compact space: a real time calculation
论文作者
论文摘要
我们计算出均匀电场的放电率,这是由于$(1+1)$ - 尺寸标量电动力学的产生,其紧凑的尺寸为radius $ r $。我们的计算是使用形式主义实时执行的。对于大型压实半径,$ r \ to \ infty $,我们恢复了标准的非紧凑空间结果。但是,其他价值$ r $和质量$ m $的值范围会产生更丰富的行为。对于$ r \ gtrsim {\ cal o}(1/m)$,$ m $足够大,电场及时振荡,而对于$ r \ to $ r \至0 $,它会减少步骤。我们讨论这些结果的起源。
We compute the discharging rate of a uniform electric field due to Schwinger pair production in $(1+1)$-dimensional scalar electrodynamics with a compact dimension of radius $R$. Our calculation is performed in real time, using the in-in formalism. For large compactification radii, $R\to\infty$, we recover the standard non compact space result. However, other ranges of values of $R$ and of the mass $m$ of the charged scalar give rise to a richer set of behaviors. For $R\gtrsim{\cal O}(1/m)$ with $m$ large enough, the electric field oscillates in time, whereas for $R\to 0$ it decreases in steps. We discuss the origin of these results.