论文标题

使用神经网络进行分子性质预测的不确定性定量

Uncertainty Quantification Using Neural Networks for Molecular Property Prediction

论文作者

Hirschfeld, Lior, Swanson, Kyle, Yang, Kevin, Barzilay, Regina, Coley, Connor W.

论文摘要

不确定性定量(UQ)是分子财产预测的重要组成部分,尤其是对于模型预测直接实验设计以及意外不精确浪费宝贵的时间和资源的药物发现应用。对于神经模型而言,对UQ的需求尤其急切,这些神经模型正越来越标准,但挑战性地解释。尽管文献中已经提出了几种UQ方法,但就这些模型的比较性能尚无明确的共识。在本文中,我们在回归任务的背景下研究了这个问题。我们使用多个互补性能指标系统地在五个基准数据集上系统地评估了几种方法。我们的实验表明,我们测试的所有方法都不明确优于其他所有方法,并且没有任何方法都会在多个数据集中产生特别可靠的错误排名。尽管我们认为这些结果表明,现有的UQ方法不足以满足所有常见的用例,并证明了进一步研究的好处,但我们以实用的建议,即现有技术相对于其他技术的表现良好。

Uncertainty quantification (UQ) is an important component of molecular property prediction, particularly for drug discovery applications where model predictions direct experimental design and where unanticipated imprecision wastes valuable time and resources. The need for UQ is especially acute for neural models, which are becoming increasingly standard yet are challenging to interpret. While several approaches to UQ have been proposed in the literature, there is no clear consensus on the comparative performance of these models. In this paper, we study this question in the context of regression tasks. We systematically evaluate several methods on five benchmark datasets using multiple complementary performance metrics. Our experiments show that none of the methods we tested is unequivocally superior to all others, and none produces a particularly reliable ranking of errors across multiple datasets. While we believe these results show that existing UQ methods are not sufficient for all common use-cases and demonstrate the benefits of further research, we conclude with a practical recommendation as to which existing techniques seem to perform well relative to others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源