论文标题

椭圆形曲线在有理数的数字上以半阿您的降低和两个分割点

Elliptic curves over the rational numbers with semi-abelian reduction and two-division points

论文作者

Schröer, Stefan

论文摘要

我们将椭圆形曲线分类为整数上的néron模型是半阿伯式的,p = 2的良好降低,其mordell-weil组包含两个阶元的元素,该阶元素二的元素在p = 2处保持非平凡。此外,我们描述了二级元素元素狭窄的那些曲线,或者存在另一个命令的另一个要素,并以Deligne- -Mummford stacks of Senus属曲线表达了我们的发现。

We classify elliptic curves over the rationals whose Néron model over the integers is semi-abelian, with good reduction at p=2, and whose Mordell--Weil group contains an element of order two that stays non-trivial at p=2. Furthermore, we describe those curves where the element of order two is narrow, or where another element of order two exists, and also express our findings in terms of Deligne--Mumford stacks of pointed curves of genus one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源