论文标题

环和环对固定环的性能的下降

Descent of properties of rings and pairs of rings to fixed rings

论文作者

Singh, Ravinder

论文摘要

让$ g $是通过戒指自动形态在整体域上行动的集团。 \σ(r)= r \ \ text {对于g \}中的所有} \σ\,$ the动作的固定环。在本文中,我们证明,在操作$ r \ rightarrow r^g:$本地pqr域,强g域,g域,希尔伯特环,$ s $ strong-strong-strong-strong戒指和根闭合域下,我们证明了以下戒指的类别。进一步,让$ \ Mathscr {p} $为环理论属性,$ r \ subseteq s $为环。一双环$(r,s)$据说是$ \ mathscr {p} $ - 一对,如果$ t $满足每个中间环$ r \ r \ subseteq t \ subseteq S. $ \ mathscr {p} $在某些情况下。例如,如果$ \ mathscr {p} = $降低,伪值域和“域中链的有限长度”,我们显示这些属性中的每一个都从$(r,s)\ rightarrow(r^g,s^g)。$成功地转移

Let $G$ be a group acting via ring automorphisms on an integral domain $R.$ A ring-theoretic property of $R$ is said to be $G$-invariant, if $R^G$ also has the property, where $R^G=\{r\in R \ | \ σ(r)=r \ \text{for all} \ σ\in G\},$ the fixed ring of the action. In this paper we prove the following classes of rings are invariant under the operation $R\rightarrow R^G:$ locally pqr domains, Strong G-domains, G-domains, Hilbert rings, $S$-strong rings and root-closed domains. Further let $\mathscr{P}$ be a ring theoretic property and $R\subseteq S$ be a ring extension. A pair of rings $(R,S)$ is said to be a $\mathscr{P}$-pair, if $T$ satisfies $\mathscr{P}$ for each intermediate ring $R\subseteq T\subseteq S.$ We also prove that the property $\mathscr{P}$ descends from $(R,S)\rightarrow (R^G, S^G)$ in several cases. For instance, if $\mathscr{P}=$ Going-down, Pseudo-valuation domain and "finite length of intermediate chains of domains", we show each of these properties successfully transfer from $(R,S)\rightarrow (R^G, S^G).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源