论文标题

人口协议中的时间优势稳定的领导者选举

Time-optimal Loosely-stabilizing Leader Election in Population Protocols

论文作者

Sudo, Yuichi, Eguchi, Ryota, Izumi, Taisuke, Masuzawa, Toshimitsu

论文摘要

我们考虑人口协议模型中的领导者选举问题。在人口协议的务实环境中,自稳定是由于其故障弹性和初始化自由的好处,这是一个高度期望的特征。但是,只有在一个有力的假设(即,网络的\ emph {cract}大小的知识)和丰富的计算资源(即状态数)之下,才有可能的设计领导者选举的设计。 Sudo等人[理论计算机科学,2012]引入的松散稳定化是一个有希望的自我稳定的放松概念,可以解决上述问题。松散的稳定性确保从任何配置开始,该网络将在短时间内存在单个领导者的安全配置,此后它将长时间维护单个领导者,但不会永远维持单个领导者。本文的主要贡献是时间优势松散稳定的领导者选举方案。到目前为止,在松散稳定的领导者选举中达到的最短收敛时间是$ O(\ log^3 n)$并行时间,但提出的带有设计参数$τ\ ge 1 $的协议达到$ O(τ\ log n)$并行收敛时间和$ω(n^τ)$平行时间(n^τ)$平行时间(i.e.i.e. the Expection。从预期的收敛时间和持有时间的意义上讲,该协议是最佳时间,因为任何松散稳定的领导者选举协议(具有相同的固定时间长度)都需要$ω(τ\ log n)$并行时间。

We consider the leader election problem in population protocol models. In pragmatic settings of population protocols, self-stabilization is a highly desired feature owing to its fault resilience and the benefit of initialization freedom. However, the design of self-stabilizing leader election is possible only under a strong assumption (i.e. the knowledge of the \emph{exact} size of a network) and rich computational resources (i.e. the number of states). Loose-stabilization, introduced by Sudo et al [Theoretical Computer Science, 2012], is a promising relaxed concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that starting from any configuration, the network will reach a safe configuration where a single leader exists within a short time, and thereafter it will maintain the single leader for a long time, but not forever. The main contribution of the paper is a time-optimal loosely-stabilizing leader election protocol. While the shortest convergence time achieved so far in loosely-stabilizing leader election is $O(\log^3 n)$ parallel time, the proposed protocol with design parameter $τ\ge 1$ attains $O(τ\log n)$ parallel convergence time and $Ω(n^τ)$ parallel holding time (i.e. the length of the period keeping the unique leader), both in expectation. This protocol is time-optimal in the sense of both the convergence and holding times in expectation because any loosely-stabilizing leader election protocol with the same length of the holding time is known to require $Ω(τ\log n)$ parallel time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源