论文标题

用于交换耦合常数的第一原理计算的单点正交化

Single-site orthogonalization for first-principles computations of exchange coupling constants

论文作者

Terasawa, Asako, Kou, Sonju, Ozaki, Taisuke, Gohda, Yoshihiro

论文摘要

为了通过Liechtenstein方法具有本地化基集的Liechtenstein方法的准确的第一原理计算$ J_ {IJ} $,我们使用单位点正交化(SO)开发了一个方案。与非正交(NO)方案相反,该方案用于在没有修改的情况下计算$ J_ {IJ} $,而Löwdinorthoconalization(LO)方案(LO)方案在选择基集的选择下,SO方案的依赖性较小。 SO方案可实现BCC FE,HCP CO和FCC NI的$ J_ {IJ} $的收敛性,并增加了基集的数量,而NO和LO计划会根据基集的变化。 SO方案的这种改进归因于避免定义不定的单位有效电位的去除轨道重叠。我们通过引入适当的自旋群体进一步改善了SO方案,以便SO带有自旋构量表(SOS)方案可以为过渡金属提供融合的居里温度。此外,SOS方案获得的DHCP ND和Rhombohedral SM的$ J_ {IJ} $的负值可以与无法通过$ J_ {IJ} $的正面集的实验发现的磁性顺序重复。

For accurate first-principles computations of exchange coupling constants $J_{ij}$ by the Liechtenstein method with localized basis sets, we developed a scheme using the single-site orthogonalization (SO). In contrast to the non-orthogonal (NO) scheme, where the basis set is used to compute $J_{ij}$ without modification, and the Löwdin orthogonalization (LO) scheme, the SO scheme exhibits much less dependence of $J_{ij}$ on the choice of the basis set. The SO scheme achieves convergence of $J_{ij}$ for bcc Fe, hcp Co, and fcc Ni with an increase in the number of the basis set, while the NO and LO schemes result in the fluctuation depending on the basis set. This improvement by the SO scheme is attributed to the removal of orbital overlaps with avoiding ill-defined single-site effective potentials. We further improve the SO scheme by introducing appropriate spin population, so that the SO with spin-population scaling (SOS) scheme can provide converged Curie temperatures for transition metals. Moreover, negative values of $J_{ij}$ for dhcp Nd and rhombohedral Sm obtained by the SOS scheme can coincide with the experimentally-found magnetic order that cannot be reproduced by positive sets of $J_{ij}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源