论文标题

自主驾驶中的LiDar Point云的深度学习:评论

Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review

论文作者

Li, Ying, Ma, Lingfei, Zhong, Zilong, Liu, Fei, Cao, Dongpu, Li, Jonathan, Chapman, Michael A.

论文摘要

最近,从3D激光雷达数据中进行判别特征学习中深度学习的进步导致自主驾驶领域的快速发展。但是,自动处理不均衡,非结构化,嘈杂和庞大的3D点云是一项具有挑战性且乏味的任务。在本文中,我们对LiDar Point Cloud中应用的现有引人注目的深度学习体系结构进行了系统的审查,详细介绍了自主驾驶中的特定任务,例如细分,检测和分类。尽管有几篇发表的研究论文重点介绍了自动驾驶汽车计算机愿景中的特定主题,但迄今为止,尚无关于在LiDar Point云中应用自动驾驶汽车的深度学习的一般调查。因此,本文的目的是缩小该主题的差距。该调查总结了最近五年中的140多个主要贡献,包括Milestone 3D深度体系结构,3D语义细分中的显着深度学习应用,对象检测和分类;特定的数据集,评估指标和最先进的性能状态。最后,我们总结了其余的挑战和未来的研究。

Recently, the advancement of deep learning in discriminative feature learning from 3D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3D point clouds is a challenging and tedious task. In this paper, we provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving such as segmentation, detection, and classification. Although several published research papers focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on deep learning applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this paper is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3D deep architectures, the remarkable deep learning applications in 3D semantic segmentation, object detection, and classification; specific datasets, evaluation metrics, and the state of the art performance. Finally, we conclude the remaining challenges and future researches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源