论文标题
基于铁的超导体的静水和单轴压力调节:对超导性,磁性,列和折叠的四方过渡的见解
Hydrostatic and uniaxial pressure tuning of iron-based superconductors: Insights into superconductivity, magnetism, nematicity and collapsed tetragonal transitions
论文作者
论文摘要
基于铁的超导体以其有趣的相图而闻名,这些相图表现出电子,磁性和结构性自由度的复杂相互作用。在观察到的相变中,包括超导,磁性和几种类型的结构跃迁,包括四方到正骨和折叠的四边形跃迁。特别是,人们认为广泛观察到的四方到正晶过渡是由电子阶耦合到晶格晶格的结果,因此称为列明过渡。因此,列表是这些材料的重要特征,它标志着电子和晶格性能耦合的重要性。相应地,这些系统特别容易通过压力(静水,单轴或某些组合)进行调整。我们审查了探究基于压力调节铁的超导体的相图的努力,并强烈关注我们自己的最新见解,对在静水压力下该材料类别的几个成员的相图。这些对FESE的研究,BA(Fe $ _ {1-X} $ CO $ _X $)$ _ 2 $ AS $ _2 $,CA(Fe $ _ {1-x} $ co $ _x $ _x $)$ _ 2 $ as $ _2 $ as $ _2 $ and Cak(Fe $ _ {1-X} $ ni $ _ $ _ $ _ 44444444444444.4444444444.44 444444444444.44 44444444.44 44.44。在不同的压力环境下,哪些测量值可以适应哪些测量值的进步。我们指出这些工具对研究更广泛相关的电子系统的潜在影响。
Iron-based superconductors are well-known for their intriguing phase diagrams, which manifest a complex interplay of electronic, magnetic and structural degrees of freedom. Among the phase transitions observed are superconducting, magnetic, and several types of structural transitions, including a tetragonal-to-orthorhombic and a collapsed-tetragonal transition. In particular, the widely-observed tetragonal-to-orthorhombic transition is believed to be a result of an electronic order that is coupled to the crystalline lattice and is, thus, referred to as nematic transition. Nematicity is therefore a prominent feature of these materials, which signals the importance of the coupling of electronic and lattice properties. Correspondingly, these systems are particularly susceptible to tuning via pressure (hydrostatic, uniaxial, or some combination). We review efforts to probe the phase diagrams of pressure-tuned iron-based superconductors, with a strong focus on our own recent insights into the phase diagrams of several members of this material class under hydrostatic pressure. These studies on FeSe, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ were, to a significant extent, made possible by advances of what measurements can be adapted to the use under differing pressure environments. We point out the potential impact of these tools for the study of the wider class of strongly correlated electron systems.