论文标题

MIMO物理层交流的基准测试端到端学习

Benchmarking End-to-end Learning of MIMO Physical-Layer Communication

论文作者

Song, Jinxiang, Häger, Christian, Schröder, Jochen, O'Shea, Tim, Wymeersch, Henk

论文摘要

已证明,多输入多输出(MIMO)系统的端到端数据驱动的机器学习(ML)具有超过工程MIMO收发器的性能,而没有任何先验的通信理论原则知识。在这项工作中,我们旨在了解与公平基准相比,该主张在何种程度和方面成立。我们研究了闭环MIMO,开环MIMO和多用户MIMO,并表明在前两种情况下,基于ML的通信的增长可能在很大程度上是归因于隐式学习的几何形状,位和幂及其分配,而不是学习新的空间编码器。对于Mu-Mimo,我们证明了一种新型方法的可行性,其集中学习和分散的执行,表现优于常规的零强度。对于每种情况,我们都提供所选神经网络架构的明确描述以及开源实现。

End-to-end data-driven machine learning (ML) of multiple-input multiple-output (MIMO) systems has been shown to have the potential of exceeding the performance of engineered MIMO transceivers, without any a priori knowledge of communication-theoretic principles. In this work, we aim to understand to what extent and for which scenarios this claim holds true when comparing with fair benchmarks. We study closed-loop MIMO, open-loop MIMO, and multi-user MIMO and show that the gains of ML-based communication in the former two cases can be to a large extent ascribed to implicitly learned geometric shaping and bit and power allocation, not to learning new spatial encoders. For MU-MIMO, we demonstrate the feasibility of a novel method with centralized learning and decentralized executing, outperforming conventional zero-forcing. For each scenario, we provide explicit descriptions as well as open-source implementations of the selected neural-network architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源