论文标题
Hermite多项式的Bessel类型正交性
Bessel Type Orthogonality For Hermite Polynomials
论文作者
论文摘要
结果表明,基于单个索引hermite多项式的零和有限的集成间隔,Hermite多项式满足了Bessel类型的正交关系。由于非对称零在最终关系中的作用,其适用性涵盖了Hermite多项式$ p_n(x)$,带有$ n \ ge 3 $。
It is shown that Hermite polynomials satisfy a Bessel type orthogonality relation, based on the zeros of a single index Hermite polynomial and with a finite integration interval. Because of the role of non-symmetric zeros in the final relation, its applicability covers Hermite polynomials $P_n(x)$ with $n\ge 3$.