论文标题

从有限时间样本的生物学数据中学习方程式

Learning Equations from Biological Data with Limited Time Samples

论文作者

Nardini, John T., Lagergren, John H., Hawkins-Daarud, Andrea, Curtin, Lee, Morris, Bethan, Rutter, Erica M., Swanson, Kristin R., Flores, Kevin B.

论文摘要

方程学习方法提出了一种有前途的工具,可以帮助科学家进行生物学数据的建模过程。以前的方程学习研究表明,这些方法可以从丰富的数据集中推断模型,但是,在存在着从生物学数据中提出的共同挑战的情况下,这些方法的性能尚未得到彻底探索。我们提出了一种方程学习方法,其中包括数据降解,方程学习,模型选择和后处理步骤,该步骤从嘈杂的时空数据中吸收动态系统模型。面对生物学数据提出的几个常见挑战,即数据采样,较大的噪声水平和数据集之间的异质性,对这种方法的性能进行了彻底研究。我们发现,当数据在显示线性和非线性动力学的时间间隔内采样时,该方法可以准确地推断出正确的基础方程,并从少量时间样本中预测未观察到的系统动力学。我们的发现表明,当使用信息性数据集时,可以将方程学习方法用于许多生物学领域的模型发现和选择。我们专注于胶质母细胞瘤多形建模作为这项工作的案例研究,以突出这些结果如何提供基于数据驱动的基于数据驱动的肿瘤侵袭预测的信息。

Equation learning methods present a promising tool to aid scientists in the modeling process for biological data. Previous equation learning studies have demonstrated that these methods can infer models from rich datasets, however, the performance of these methods in the presence of common challenges from biological data has not been thoroughly explored. We present an equation learning methodology comprised of data denoising, equation learning, model selection and post-processing steps that infers a dynamical systems model from noisy spatiotemporal data. The performance of this methodology is thoroughly investigated in the face of several common challenges presented by biological data, namely, sparse data sampling, large noise levels, and heterogeneity between datasets. We find that this methodology can accurately infer the correct underlying equation and predict unobserved system dynamics from a small number of time samples when the data is sampled over a time interval exhibiting both linear and nonlinear dynamics. Our findings suggest that equation learning methods can be used for model discovery and selection in many areas of biology when an informative dataset is used. We focus on glioblastoma multiforme modeling as a case study in this work to highlight how these results are informative for data-driven modeling-based tumor invasion predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源