论文标题
Free2Shard:通过动态自我分配的自适应对抗性抗性分片
Free2Shard: Adaptive-adversary-resistant sharding via Dynamic Self Allocation
论文作者
论文摘要
由于大规模区块链部署的增长,在设计碎片协议方面取得了许多最新进展,这些方案在节点数量中线性地实现吞吐量缩放。但是,现有协议对对手自适应地损坏固定部分的节点并不强大。在本文中,我们提出了Free2Shard - 一种新的体系结构,可以实现接近线性的扩展,同时又可以抵抗完全自适应的对手。 该体系结构的焦点是一种动态的自我分配算法,可让用户分配给碎片,以响应对抗性动作,而无需中央或加密证明。该体系结构在碎片方案中具有多种吸引人的功能,包括:(a)处理大量碎片(相对于节点的数量)的能力; (b)异质碎片需求; (c)只需要一小部分才能遵循自我分配; (d)异步碎片旋转; (e)在纯粹的无身份证明设置中操作。关键的技术贡献是在动态游戏理论中与布莱克威尔的经典作品的深刻数学联系。
Propelled by the growth of large-scale blockchain deployments, much recent progress has been made in designing sharding protocols that achieve throughput scaling linearly in the number of nodes. However, existing protocols are not robust to an adversary adaptively corrupting a fixed fraction of nodes. In this paper, we propose Free2Shard -- a new architecture that achieves near-linear scaling while being secure against a fully adaptive adversary. The focal point of this architecture is a dynamic self-allocation algorithm that lets users allocate themselves to shards in response to adversarial action, without requiring a central or cryptographic proof. This architecture has several attractive features unusual for sharding protocols, including: (a) the ability to handle the regime of large number of shards (relative to the number of nodes); (b) heterogeneous shard demands; (c) requiring only a small minority to follow the self-allocation; (d) asynchronous shard rotation; (e) operation in a purely identity-free proof-of-work setting. The key technical contribution is a deep mathematical connection to the classical work of Blackwell in dynamic game theory.