论文标题
天空如何高斯?来自量子信息的原始非高斯性
How Gaussian can the Sky be? Primordial Non-Gaussianity from Quantum Information
论文作者
论文摘要
使用量子信息图片将早期宇宙描述为依赖时间的量子密度矩阵,随着时间的流逝,我们扮演了随机变量的作用,我们计算了非高斯特征在原始波动的分布中。我们使用准清理模型来计算相应的量子渔民信息作为在两个不同时间的密度矩阵的相对纠缠熵的第二个衍生物。我们根据时间量子估计器来定义曲率波动。使用标准量子估计理论,我们计算原始波动的统计分布中的非高斯特征。我们的方法独立于模型,仅依赖于定位阶段的存在。我们表明,无论是挤压和等边形式的形式,都有原始的非高斯。挤压极限给出$ f _ {\ rm nl} \ sim n_s-1 $的值。在等边极限中,我们发现$ f _ {\ rm nl} \ sim 0.03 $。等边非高斯性是由于爱因斯坦方程的非线性引起的。另一方面,被压缩的是由于时钟同步的量子性质,因此是真实的,因此不能作为全局曲率进行评估。我们确定了一种新的效果:{\ it时钟偏置},它是一种纯量子效应,并在频谱倾斜和运行中引入偏见,$ \ sim 10^{ - 4} $的功率谱,它可能是可以测量的,并且可以在早期宇宙的量子性质上产生宝贵的信息。
Using the quantum information picture to describe the early universe as a time dependent quantum density matrix, with time playing the role of a stochastic variable, we compute the non-gaussian features in the distribution of primordial fluctuations. We use a quasi de Sitter model to compute the corresponding quantum Fisher information function as the second derivative of the relative entanglement entropy for the density matrix at two different times. We define the curvature fluctuations in terms of the time quantum estimator. Using standard quantum estimation theory we compute the non-gaussian features in the statistical distribution of primordial fluctuations. Our approach is model independent and only relies on the existence of a quasi de Sitter phase. We show that there are primordial non-gaussianities, both in the form of squeezed and equilateral shapes. The squeezed limit gives a value of $f_{\rm NL} \sim n_s-1$. In the equilateral limit we find that $f_{\rm NL} \sim 0.03$. The equilateral non-gaussianity is due to the non-linearity of Einstein's equation. On the other hand, the squeezed one is due to the quantum nature of clock synchronization and thus real and cannot be gauged away as a global curvature. We identify a new effect: {\it clock bias} which is a pure quantum effect and introduces a bias in the spectral tilt and running of the power spectrum of order $\sim 10^{-4}$, which could be potentially measurable and yield precious information on the quantum nature of the early Universe.