论文标题

在数字字段中分类和标记不可或缺的理想

Sorting and labelling integral ideals in a number field

论文作者

Cremona, John, Page, Aurel, Sutherland, Andrew V.

论文摘要

我们定义了标记和订购数字字段不可或缺的理想的方案,包括主要理想作为特殊情况。我们定义的顺序仅取决于选择每个字段$ k $的一元不可减少的积分定义多项式,我们首先为每个字段定义其在belabas之后的唯一降低的定义多项式。我们对$ K $的主要理想集合定义了总订单,然后将其扩展到$ k $的所有非零积分理想的集合。该订单使我们能够给出$ n.i $的唯一标签,其中$ n $是其标准,$ i $是所有理想$ n $的理想列表中理想的索引。我们的理想标签方案具有几个不错的特性:对于给定的规范,主要的理想总是首先出现,并且鉴于规范的分解,norm $ n $和标签的理想之间的两次射击是可以在多项式时间内计算的。 我们这样做的动机是有一种定义明确,简洁的方法,以对LMFDB等数据库进行分类和标记理想。我们已经实施了算法,这些算法在Sage,Magma和Pari中实现了该方案。

We define a scheme for labelling and ordering integral ideals of number fields, including prime ideals as a special case. The order we define depends only on the choice of a monic irreducible integral defining polynomial for each field $K$, and we start by defining for each field its unique reduced defining polynomial, after Belabas. We define a total order on the set of prime ideals of $K$ and then extend this to a total order on the set of all nonzero integral ideals of $K$. This order allows us to give a unique label of the form $N.i$, where $N$ is its norm and $i$ is the index of the ideal in the ordered list of all ideals of norm $N$. Our ideal labelling scheme has several nice properties: for a given norm, prime ideals always appear first, and given the factorisation of the norm, the bijection between ideals of norm $N$ and labels is computable in polynomial time. Our motivation for this is to have a well-defined and concise way to sort and label ideals for use in databases such as the LMFDB. We have implemented algorithms which realise this scheme, in Sage, Magma and Pari.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源