论文标题

护肤项目是一种互动深度学习系统,用于鉴别恶性皮肤病变。技术报告

The Skincare project, an interactive deep learning system for differential diagnosis of malignant skin lesions. Technical Report

论文作者

Sonntag, Daniel, Nunnari, Fabrizio, Profitlich, Hans-Jürgen

论文摘要

对于寻求皮肤科护理的患者,皮肤科医生的短缺会导致长时间的等待时间。此外,据报道,全科医生的诊断准确性低于人工智能软件的准确性。本文介绍了护肤项目(H2020,EIT数字)。贡献包括基于交互式机器学习(IML)的临床决策支持的技术,对数字欧洲医疗保健基础设施的参考体系结构(也参见EIT MCP),用于汇总数字化患者信息的技术组件以及将决策支持技术集成到临床测试床上环境中。但是,主要贡献是患者和医生皮肤病学的诊断和决策支持系统,这是一种互动的深度学习系统,用于鉴别恶性皮肤病变。在本文中,我们描述了它的功能和用户界面,以促进从人类输入中学习的机器学习。基线深度学习系统可提供最先进的结果,并使用来自皮肤病学图像数据库(ISIC)的De识别案例开发和验证,并具有增强全科医生甚至皮肤科医生的潜力,该病例具有大约20000个用于开发和验证的案例,由董事会认证的皮肤病学家提供了定义每个病例的参考标准。 ISIC允许进行鉴别诊断,这是八个诊断的排名清单,用于计划诊断歧义的共同环境中的治疗方法。我们总体描述了护肤项目的结果,并专注于支持IML中人类与机器之间的沟通和协调的步骤。这是医疗领域未来认知助手发展的组成部分,我们描述了必要的智能用户界面。

A shortage of dermatologists causes long wait times for patients who seek dermatologic care. In addition, the diagnostic accuracy of general practitioners has been reported to be lower than the accuracy of artificial intelligence software. This article describes the Skincare project (H2020, EIT Digital). Contributions include enabling technology for clinical decision support based on interactive machine learning (IML), a reference architecture towards a Digital European Healthcare Infrastructure (also cf. EIT MCPS), technical components for aggregating digitised patient information, and the integration of decision support technology into clinical test-bed environments. However, the main contribution is a diagnostic and decision support system in dermatology for patients and doctors, an interactive deep learning system for differential diagnosis of malignant skin lesions. In this article, we describe its functionalities and the user interfaces to facilitate machine learning from human input. The baseline deep learning system, which delivers state-of-the-art results and the potential to augment general practitioners and even dermatologists, was developed and validated using de-identified cases from a dermatology image data base (ISIC), which has about 20000 cases for development and validation, provided by board-certified dermatologists defining the reference standard for every case. ISIC allows for differential diagnosis, a ranked list of eight diagnoses, that is used to plan treatments in the common setting of diagnostic ambiguity. We give an overall description of the outcome of the Skincare project, and we focus on the steps to support communication and coordination between humans and machine in IML. This is an integral part of the development of future cognitive assistants in the medical domain, and we describe the necessary intelligent user interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源