论文标题

$ \ text {c}(x)$上的tychonoff空间和环理论顺序

Tychonoff spaces and a ring theoretic order on $\text{C}(X)$

论文作者

Burgess, W. D., Raphael, R.

论文摘要

减少的环顺序(RR订单)是$ r \ le _ {\ text {rr}} s $的自然部分顺序,如果$ r^2 = rs $可以在$ \ text {c}(x)$的表格中以代数或拓扑进行代数研究。这里的重点放在那些减少的环上,其中每对元素在RR订单中具有最大的含量,这意味着$ x $。如果$ \ text {c}(x)$具有此属性,则$ x $称为rr-ood-ood。令人惊讶的是,本地连接和基本断开的空间共享此属性。在各种拓扑条件下,研究了RR-Good的性质,包括其在笛卡尔产品下的行为。两个RR良好空间的产物可能无法成为RR良好(例如,$β\ Mathbf {r} \ timesβ\ Mathbf {r} $),但是,$ p $ -space和rr good food foodlindelöf空间的产物始终是RR-good。 $ p $ - 空格,$ f $ - 空格和$ u $ - 空间,Glicksberg的定理以及Comfort,Hindman和Negrepontis的工作也是如此。

The reduced ring order (rr-order) is a natural partial order on a reduced ring $R$ given by $r\le_{\text{rr}} s$ if $r^2=rs$. It can be studied algebraically or topologically in rings of the form $\text{C}(X)$. The focus here is on those reduced rings in which each pair of elements has an infimum in the rr-order, and what this implies for $X$. A space $X$ is called rr-good if $\text{C}(X)$ has this property. Surprisingly both locally connected and basically disconnected spaces share this property. The rr-good property is studied under various topological conditions including its behaviour under Cartesian products. The product of two rr-good spaces can fail to be rr-good (e.g., $β\mathbf{R}\times β\mathbf{R}$), however, the product of a $P$-space and an rr-good weakly Lindelöf space is always rr-good. $P$-spaces, $F$-spaces and $U$-spaces play a role, as do Glicksberg's theorem and work by Comfort, Hindman and Negrepontis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源