论文标题
分散的和副式订单拓扑
Scattered and paracompact order topologies
论文作者
论文摘要
我们表明(在ZFC中)每个无限集可以配备2^| S |完整的指标,它们在S上生成相互非塑形散射拓扑,此外,我们表明(在ZFC中)每个不可数的集合可以配备2^| S |相互非塑形散射和紧凑的顺序拓扑。 (对于ZFC而言,这是无限无限的S.)在两个枚举定理中的基数2^| s |是最佳的。
We show that (in ZFC) every infinite set S can be equipped with 2^|S| complete metrics which generate mutually non-homeomorphic scattered order topologies on S. Furthermore, we show that (in ZFC) every uncountable set S can be equipped with 2^|S| mutually non-homeomorphic scattered and compact order topologies. (This would be unprovable in ZFC for countably infinite S.) In both enumeration theorems the cardinality 2^|S| is optimal.