论文标题

Euler-Maruyama方案的总变化中的收敛性,用于扩散过程,具有可测量的漂移系数和加性噪声

Convergence in total variation of the Euler-Maruyama scheme applied to diffusion processes with measurable drift coefficient and additive noise

论文作者

Bencheikh, Oumaima, Jourdain, Benjamin

论文摘要

我们对以恒定扩散系数和有限的可测量漂移系数为$ d $的随机微分方程的Euler-Maruyama离散化感兴趣。在该方案中,使用时间变量的随机化来摆脱该变量中漂移的任何规律性假设。我们证明,总变化距离的订单$ 1/2 $差异很弱。当漂移在分布意义上具有空间分歧时,与$ρ$ th的功率相对于勒布斯格在空间中均匀地集成的电源,及时及时左右,对于一些$ρ\ ge d $,终端时的收敛顺序将提高到$ 1 $ $ 1 $。在尺寸$ d = 1 $中,当漂移的空间衍生物是空间中的一个量度时,将保留此结果。我们通过数值实验确认我们的理论分析。

We are interested in the Euler-Maruyama discretization of a stochastic differential equation in dimension $d$ with constant diffusion coefficient and bounded measurable drift coefficient. In the scheme, a randomization of the time variable is used to get rid of any regularity assumption of the drift in this variable. We prove weak convergence with order $1/2$ in total variation distance. When the drift has a spatial divergence in the sense of distributions with $ρ$-th power integrable with respect to the Lebesgue measure in space uniformly in time for some $ρ\ge d$, the order of convergence at the terminal time improves to $1$ up to some logarithmic factor. In dimension $d=1$, this result is preserved when the spatial derivative of the drift is a measure in space with total mass bounded uniformly in time. We confirm our theoretical analysis by numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源