论文标题

关于满足罗宾不平等的数字,下一个反例的属性和改进的特定界限

On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds

论文作者

Vojak, Robert

论文摘要

定义$ s(n):= n^{ - 1}σ(n)$($σ(n):= \ sum_ {d | n} d)$ and $ω(n)$是$ n $的prime级数。 $ s $的属性之一起着中心作用:$ s(p^a)> s(q^b)$如果$ p <q $是质数,则在$ a,b $ a,b $ a,b \ geqslant 1 $外没有特殊条件。该结果与多样性置换定理相结合,将帮助我们建立下一个反例(例如$ c $)的Robin的不等式$ s(n)<e^γ\ log \ log \ log \ log n $的属性。数字$ c $是超级繁殖的,$ω(c)$必须大于接近10亿的数字。另外,比率$ p_ {ω(c)} / \ log c $具有下限和上限。最多$ω(C)/14 $多重参数大于$ 1 $。最后但并非最不重要的一点是,我们将简单的方法应用于各种数字类别的不平等现象。

Define $s (n) := n^{- 1} σ(n)$ ($σ(n):=\sum_{d|n}d )$ and $ω(n)$ is the number of prime divisors of $n$. One of the properties of $s$ plays a central role: $s (p^a) > s (q^b)$ if $p < q$ are prime numbers, with no special condition on $a, b$ other than $a, b \geqslant 1$. This result, combined with the Multiplicity Permutation theorem, will help us establish properties of the next counterexample (say $c$) to Robin's inequality $s (n) < e^γ \log \log n$. The number $c$ is superabundant, and $ω(c)$ must be greater than a number close to one billion. In addition, the ratio $p_{ω(c)} / \log c$ has a lower and upper bound. At most $ω(c)/14$ multiplicity parameters are greater than $1$. Last but not least, we apply simple methods to sharpen Robin's inequality for various categories of numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源