论文标题

RGB图像中光谱重建的摄像机光谱敏感性的自适应轻量注意力网络

AdaptiveWeighted Attention Network with Camera Spectral Sensitivity Prior for Spectral Reconstruction from RGB Images

论文作者

Li, Jiaojiao, Wu, Chaoxiong, Song, Rui, Li, Yunsong, Liu, Fei

论文摘要

频谱重建(SR)的最新有希望的努力集中在学习复杂的映射中,通过使用更深入和更广泛的卷积神经网络(CNN)。然而,大多数基于CNN的SR算法忽略了探索中间特征之间的摄像机光谱灵敏度(CSS)和相互依存关系,从而限制了SR的网络和性能的表示能力。为了征服这些问题,我们为SR提出了一个新颖的自适应加权注意网络(AWAN),SR的骨干堆放着多个双重残留的注意力块(DLAB),并用长而短的跳过连接装饰,以形成双重残差学习。具体而言,我们研究了一个自适应加权通道注意(AWCA)模块,以通过整合通道之间的相关性来重新分配通道特征响应。此外,开发了贴片级二阶非本地(PSNL)模块,以通过二阶非本地操作捕获长期空间上下文信息,以实现更强大的功能表示。基于回收的RGB图像可以通过重建的高光谱图像(HSI)和给定的CSS函数投影的事实,我们将RGB图像的差异和HSIS的差异作为更精确的重建。实验结果证明了我们提出的AWAN网络在定量比较和知觉质量方面的有效性,而不是其他最先进的SR方法。在NTIRE 2020光谱重建挑战中,我们的条目获得了清洁轨道上的第一排名,在现实世界中获得了第三名。代码可在https://github.com/deep-imagelab/awan上找到。

Recent promising effort for spectral reconstruction (SR) focuses on learning a complicated mapping through using a deeper and wider convolutional neural networks (CNNs). Nevertheless, most CNN-based SR algorithms neglect to explore the camera spectral sensitivity (CSS) prior and interdependencies among intermediate features, thus limiting the representation ability of the network and performance of SR. To conquer these issues, we propose a novel adaptive weighted attention network (AWAN) for SR, whose backbone is stacked with multiple dual residual attention blocks (DRAB) decorating with long and short skip connections to form the dual residual learning. Concretely, we investigate an adaptive weighted channel attention (AWCA) module to reallocate channel-wise feature responses via integrating correlations between channels. Furthermore, a patch-level second-order non-local (PSNL) module is developed to capture long-range spatial contextual information by second-order non-local operations for more powerful feature representations. Based on the fact that the recovered RGB images can be projected by the reconstructed hyperspectral image (HSI) and the given CSS function, we incorporate the discrepancies of the RGB images and HSIs as a finer constraint for more accurate reconstruction. Experimental results demonstrate the effectiveness of our proposed AWAN network in terms of quantitative comparison and perceptual quality over other state-of-the-art SR methods. In the NTIRE 2020 Spectral Reconstruction Challenge, our entries obtain the 1st ranking on the Clean track and the 3rd place on the Real World track. Codes are available at https://github.com/Deep-imagelab/AWAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源