论文标题
在涉及可变订单分数$ p(\ cdot)的Kirchhoff-choquard方程式上
On a class of Kirchhoff-Choquard equations involving variable-order fractional $p(\cdot)-$ Laplacian and without Ambrosetti-Rabinowitz type condition
论文作者
论文摘要
在本文中,我们研究了使用Nehari歧管的基态解决方案的存在,以及使用喷泉定理和双重喷泉定理的无限多种解决方案的存在,用于一类双向非局部kirchhoff-choquard类型方程,涉及可变的分数分数$ p(\ cdot) - $ $ $ $ laplacian-$ laplacian-laplacian。在这里,非线性无法满足众所周知的Ambrosetti-Rabinowitz型条件。
In this article we study the existence of weak solution, existence of ground state solution using Nehari manifold and existence of infinitely many solutions using Fountain theorem and Dual fountain theorem for a class of doubly nonlocal Kirchhoff-Choquard type equations involving the variable-order fractional $p(\cdot)-$ Laplacian operator. Here the nonlinearity does not satisfy the well known Ambrosetti-Rabinowitz type condition.