论文标题
Hörmander的Markovian Rough Paths的版本
A Version of Hörmander's Theorem for Markovian Rough Paths
论文作者
论文摘要
我们考虑表格\(dy_t = \ sum_i v_i(y_t)d \ boldsymbol {x}^i_t+v_0(y_t)dt \)的粗略微分方程,其中\(\ boldsymbol {x} _t \)是一个巨大的粗糙路径。我们证明,如果矢量字段\(((v_i)_ {0 \ leq i \ leq d} \)满足Hörmander的支架生成条件,则\(y_t \)承认具有高斯类型上限的平滑密度,鉴于\(x_t \)的生成器满足某些不合格的条件。本文的主要新成分是研究\(x_t \)的Jacobian过程的非分类性质。
We consider a rough differential equation of the form \(dY_t=\sum_i V_i(Y_t)d\boldsymbol{X}^i_t+V_0(Y_t)dt \), where \(\boldsymbol{X}_t \) is a Markovian rough path. We demonstrate that if the vector fields \((V_i)_{0\leq i\leq d} \) satisfy Hörmander's bracket generating condition, then \(Y_t\) admits a smooth density with a Gaussian type upper bound, given that the generator of \(X_t\) satisfy certain non-degenerate conditions. The main new ingredient of this paper is the study of non-degenerate property of the Jacobian process of \(X_t\).