论文标题

$ f $ - 阈值和Thom-Sebastiani型多项式的测试理想

$F$-thresholds and test ideals of Thom-Sebastiani type polynomials

论文作者

Villa, Manuel González, Jaramillo-Velez, Delio, Núñez-Betancourt, Luis

论文摘要

我们为Thom-Sebastiani型多项式的$ F $阈值提供了一个公式,该公式在一个完美的主要特征领域。该结果扩展了对角线超出表面的$ f $ pure阈值的公式。我们还计算了Thom-Sebastiani型多项式的第一个测试理想。最后,我们将结果应用于发现的高空图表,其中日志规范阈值等于无限许多质量数字的$ f $ pure阈值。

We provide a formula for $F$-thresholds of a Thom-Sebastiani type polynomial over a perfect field of prime characteristic. This result extends the formula for the $F$-pure threshold of a diagonal hypersurface. We also compute the first test ideal of Thom-Sebastiani type polynomials. Finally, we apply our result to find hypersurfaces where the log canonical thresholds equals the $F$-pure thresholds for infinitely many prime numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源