论文标题

PARADIAG:基于对角技术的平行算法

ParaDiag: parallel-in-time algorithms based on the diagonalization technique

论文作者

Gander, Martin J., Liu, Jun, Wu, Shu-Lin, Yue, Xiaoqiang, Zhou, Tao

论文摘要

2008年,Maday和Ronquist引入了一种有趣的新方法,用于直接并行时间(PINT)时间依赖性PDE的解决方案。这个想法是将时间步进矩阵对角线,使空间离散化的矩阵保持不变,然后并行解决所有时间步骤。从那时起,出现了几种变体,我们称这些密切相关的算法Paradiag算法。文献中的Paradiagalgorithms可以分为两组: Paradiag-i:直接独立求解器, Paradiag-II:迭代求解器。 我们将在本说明中解释每个组的基本功能。为了有具体的例子,我们将介绍Paradiag-I和Paradiag-II以进行对流扩散方程。我们还将为波方程引入Paradiag-II,并为波方程一个最佳的控制问题。我们本可以使用对流扩散方程来说明Paradiag-II,但是WOVE方程已知会引起某些品脱算法的问题,因此构成了一个特别有趣的示例,该示例已测试了Paradiag算法。我们在每种情况下显示了主要的理论结果,还提供了测试的MATLAB代码。 MATLAB代码的目的是帮助感兴趣的读者了解Paradiag算法的关键特征,而无需高度调整以提高效率和/或低内存的使用。 我们还为2D线性对流扩散方程式提供了Paradiag算法的加速测量。这些结果是在中国的Tianhe-1超级计算机和美国SIUE校园集群上获得的,我们将这些结果与Parareal和Mgrit的性能进行了比较,这是两个广泛使用的品脱算法。

In 2008, Maday and Ronquist introduced an interesting new approach for the direct parallel-in-time (PinT) solution of time-dependent PDEs. The idea is to diagonalize the time stepping matrix, keeping the matrices for the space discretization unchanged, and then to solve all time steps in parallel. Since then, several variants appeared, and we call these closely related algorithms ParaDiag algorithms. ParaDiagalgorithms in the literature can be classified into two groups: ParaDiag-I: direct standalone solvers, ParaDiag-II: iterative solvers. We will explain the basic features of each group in this note. To have concrete examples, we will introduce ParaDiag-I and ParaDiag-II for the advection-diffusion equation. We will also introduce ParaDiag-II for the wave equation and an optimal control problem for the wave equation. We could have used the advection-diffusion equation as well to illustrate ParaDiag-II, but wave equations are known to cause problems for certain PinT algorithms and thus constitute an especially interesting example for which ParaDiag algorithms were tested. We show the main known theoretical results in each case, and also provide Matlab codes for testing. The goal of the Matlab codes is to help the interested reader understand the key features of the ParaDiag algorithms, without intention to be highly tuned for efficiency and/or low memory use. We also provide speedup measurements of ParaDiag algorithms for a 2D linear advection-diffusion equation. These results are obtained on the Tianhe-1 supercomputer in China and the SIUE Campus Cluster in the US and and we compare these results to the performance of parareal and MGRiT, two widely used PinT algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源