论文标题
一个非本地模型,用于嵌入式不连续性植物动力学的脱位
A Nonlocal Model for Dislocations with Embedded Discontinuity Peridynamics
论文作者
论文摘要
我们基于植物动力学框架开发了一种新型的非本地位错模型。通过将内部不连续性嵌入非局部本构定律中,复制了Volterra错位模型中的位移跳跃,经典弹性中的固有奇异性是正则化的,并且可以避免先前的植物动力学模型中的表面效应。扩展的嵌入式不连续性peridynanics在治疗不连续性方面克服了非物理耗散,并且仍然很容易通过基于粒子的无网状方法来解决。将提出的位错模型的性质与边缘位错,双边位错位,螺钉位错和圆形脱位环的情况下进行比较。数值结果表明,在Peridynegics模型中没有奇异性在位移场中具有很高的一致性,相互作用力与Peach-Koehler公式一致,直到核心区域,并且可以在3D中以有限的计算成本达到高精度。所提出的模型为脱位多尺度建模提供了可行的工具。尽管位错被建模为预定义的位移跳跃,但直接扩展了对各种断裂条件进行建模的方法。
We develop a novel nonlocal model of dislocations based on the framework of peridynamics. By embedding interior discontinuities into the nonlocal constitutive law, the displacement jump in the Volterra dislocation model is reproduced, intrinsic singularities in classical elasticity are regularized, and the surface effect in previous peridynamics models is avoided. The extended embedded discontinuity peridynamics overcomes unphysical dissipation in treating discontinuity and is still easy to be solved with the particle-based meshless method. The properties of the proposed dislocation model are compared with classical elasticity solutions under the case of an edge dislocation, double edge dislocations, a screw dislocation and a circular dislocation loop. Numerical results show a high consistency in displacement field while no singularity appears in the peridynamics model, the interaction force is in agreement with be the Peach-Koehler formula down to the core region and high accuracy can be reached in 3D with limited computation cost. The proposed model provides a feasible tool for multiscale modeling of dislocations. Though dislocation is modeled as pre-defined displacement jump, it is straightforward to extend the method to model various fracture conditions.